Abstract
2-5(A) synthetases are a family of interferon-induced enzymes that polymerize ATP into 2'-5' linked oligoadenylates that activate RNase L and cause mRNA degradation. Because they all can synthesize 2-5(A), the reason for the existence of so many synthetase isozymes is unclear. Here we report that the 9-2 isozyme of 2-5(A) synthetase has an additional activity: it promotes apoptosis in mammalian cells. The proapoptotic activity of 9-2 was isozyme-specific and enzyme activity-independent. The 9-2-expressing cells exhibited many properties of cells undergoing apoptosis, such as DNA fragmentation, caspase activation, and poly ADP-ribose polymerase and lamin B cleavage. The isozyme-specific carboxyl-terminal tail of the 9-2 protein was shown, by molecular modeling, to contain a Bcl-2 homology 3 (BH3) domain, suggesting that it may be able to interact with members of the Bcl-2 family that contain BH1 and BH2 domains. Co-immunoprecipitate assays and confocal microscopy showed that 9-2 can indeed interact with the anti-apoptotic proteins Bcl-2 and Bclx(L) in vivo and in vitro. Mutations in the BH3 domain that eliminated the 9-2-Bcl-2 amd 9-2-Bclx(L) interactions also eliminated the apoptotic activity of 9-2. Thus, we have identified an interferon-induced dual function protein of the Bcl-2 family that can synthesize 2-5(A) and promote cellular apoptosis independently. Moreover, the cellular abundance of this protein is regulated by alternative splicing; the other isozymes encoded by the same gene are not proapoptotic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.