Abstract

Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) is an intracellular biopolyester synthesized by various bacteria. Polyhydroxyalkanoate granule-binding protein (PhaP), a natural biomacromolecule symbiotic with PHBHHx, can be steadily adsorbed into the PHBHHx matrix through hydrophobic interactions. In this study, PHBHHx nanoparticles (NPs) and iRGD peptide fused PhaP (iRGD-PhaP) were used in conjunction to build a specific drug delivery system for targeted accumulation and tissue penetration in prostate tumors. A proper presentation and high surface density of iRGD could be ensured within 1 h through a convenient coincubation method using a PhaP-mediated modification strategy. iRGD-PhaP-NPs showed a satisfactory particle size (182.9 ± 4.9 nm) and slightly negative surface charge (-17.2 ± 0.3 mV), with a uniformly spherical shape. In human prostate cancer cell line PC3, iRGD-PhaP-NPs displayed remarkably improved cellular uptake compared to naked NPs, which was attributed to iRGD receptor-mediated active endocytosis. Enhanced targeted accumulation and retention of iRGD-PhaP-NPs in prostate tumors were found in both the ex vivo tumor spheroid assay and in vivo real-time imaging. Moreover, slices of the tumor deep region demonstrated the favorable tumor penetration ability of iRGD-PhaP-NPs after intravenous administration. These results highlight the specificity and efficiency of iRGD-PhaP-NPs in future clinical use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call