Abstract
The photocatalytic hydrogen production performance of semiconductor materials can be improved by co-catalyst modification. In most of the studies, the size of the co-catalyst is relatively small compared to the primary catalyst. However, in this study, we employed a novel strategy by synthesizing a relatively large-sized Cu2MoS4 as the co-catalyst and in situ loading smaller-sized Zn0.5Cd0.5S onto Cu2MoS4, verifying that Cu2MoS4 enhances the photocatalytic hydrogen production efficiency of Zn0.5Cd0.5S. It can be observed by scanning electron microscopy (SEM) that the lateral size of 2D Cu2MoS4 is at least 50 times larger than the Zn0.5Cd0.5S nanoparticle particle size. In addition, Density Functional Theory (DFT) calculations have demonstrated that the active site for hydrogen production in the composite is located in Cu2MoS4. The large-sized of Cu2MoS4 not only provides more active sites but also broadens the electron transport channel, which is conducive to promoting the transfer of photogenerated electrons from Zn0.5Cd0.5S. This work enriches the study of large-sized materials as co-catalyst and provides a strategy for the construction of composite catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.