Abstract
Spatio-spectral fusion of panchromatic (PAN) and hyperspectral (HS) images is of great importance in improving spatial resolution of images acquired by many commercial HS sensors. DenseNets have recently achieved great success for image super-resolution because they facilitate gradient flow by concatenating all the feature outputs in a feedforward manner. In this article, we propose a residual hyper-dense network (RHDN) that extends the DenseNet to solve the spatio-spectral fusion problem. The overall structure of the proposed RHDN method is a two-branch network, which allows the network to capture the features of HS images within and outside the visible range separately. At each branch of the network, a two-stream strategy of feature extraction is designed to process PAN and HS images individually. A convolutional neural network (CNN) with cascade residual hyper-dense blocks (RHDBs), which allows direct connections between the pairs of layers within the same stream and those across different streams, is proposed to learn more complex combinations between the HS and PAN images. The residual learning is adopted to make the network efficient. Extensive benchmark evaluations well demonstrate that the proposed RHDN fusion method yields significant improvements over many widely accepted state-of-the-art approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.