Abstract

In this article we verify that ‘Wedderburn’s Principal Theorem’ has a particularly pleasant spatial implementation in the case of cleft subalgebras of the algebra of all linear transformations on a finite-dimensional vector space. Once such a subalgebra is represented by block upper triangular matrices with respect to a maximal chain of its invariant subspaces, after an application of a block upper triangular similarity, the resulting algebra is a linear direct sum of an algebra of block-diagonal matrices and an algebra of strictly block upper triangular matrices (i.e. the radical), while the block-diagonal matrices involved have a very nice structure. We apply this result to demonstrate that, when the underlying field is algebraically closed, and , the algebra is unicellular, i.e. the lattice of all invariant subspaces of is totally ordered by inclusion. The quantity stands for the length of (every) maximal chain of non-zero invariant subspaces of .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.