Abstract
This study investigates the ultraslow diffusion by a spatial structural derivative, in which the exponential function ex is selected as the structural function to construct the local structural derivative diffusion equation model. The analytical solution of the diffusion equation is a form of Biexponential distribution. Its corresponding mean squared displacement is numerically calculated, and increases more slowly than the logarithmic function of time. The local structural derivative diffusion equation with the structural function ex in space is an alternative physical and mathematical modeling model to characterize a kind of ultraslow diffusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.