Abstract

This paper proposes a kinetic theory approach coupling together the modeling of crowd evacuation from a bounded domain with exit doors and infectious disease contagion. The spatial movement of individuals in the crowd is modeled by a proper description of the interactions with people in the crowd and the environment, including walls and exits. At the same time, interactions among healthy and infectious individuals may generate disease spreading if exposure time is long enough. Immunization of the population and individual awareness to contagion is considered as well. Interactions are modeled by tools of game theory, that let us propose the so-called tables of games that are introduced in the general kinetic equations. The proposed model is qualitatively studied and, through a series of case studies, we explore different scenarios related to crowding and gathering formation within indoor venues under the spread of a respiratory infectious disease, obtaining insights on specific policies to reduce contagion that may be implemented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.