Abstract
AbstractThe Arctic sea ice response to a warming climate is assessed in a subset of models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6), using several metrics in comparison with satellite observations and results from the Pan-Arctic Ice Ocean Modeling and Assimilation System and the Regional Arctic System Model. Our study examines the historical representation of sea ice extent, volume, and thickness using spatial analysis metrics, such as the integrated ice edge error, Brier score, and spatial probability score. We find that the CMIP6 multimodel mean captures the mean annual cycle and 1979–2014 sea ice trends remarkably well. However, individual models experience a wide range of uncertainty in the spatial distribution of sea ice when compared against satellite measurements and reanalysis data. Our metrics expose common and individual regional model biases, which sea ice temporal analyses alone do not capture. We identify large ice edge and ice thickness errors in Arctic subregions, implying possible model specific limitations in or lack of representation of some key physical processes. We postulate that many of them could be related to the oceanic forcing, especially in the marginal and shelf seas, where seasonal sea ice changes are not adequately simulated. We therefore conclude that an individual model’s ability to represent the observed/reanalysis spatial distribution still remains a challenge. We propose the spatial analysis metrics as useful tools to diagnose model limitations, narrow down possible processes affecting them, and guide future model improvements critical to the representation and projections of Arctic climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.