Abstract

Abstract A space-time adaptive algorithm to solve the motion of a rigid disk in an incompressible Newtonian fluid is presented, which allows collision or quasi-collision processes to be computed with high accuracy. In particular, we recover the theoretical result proven in [M. Hillairet, Lack of collision between solid bodies in a 2D incompressible viscous flow, Comm. Partial Differential Equations 32 2007, 7–9, 1345–1371], that the disk will never touch the boundary of the domain in finite time. Anisotropic, continuous piecewise linear finite elements are used for the space discretization, the Euler scheme for the time discretization. The adaptive criteria are based on a posteriori error estimates for simpler problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call