Abstract
A space-time Trefftz discontinuous Galerkin method for the Schr\"odinger equation with piecewise-constant potential is proposed and analyzed. Following the spirit of Trefftz methods, trial and test spaces are spanned by non-polynomial complex wave functions that satisfy the Schro\"odinger equation locally on each element of the space-time mesh. This allows for a significant reduction in the number of degrees of freedom in comparison with full polynomial spaces. We prove well-posedness and stability of the method, and, for the one- and two- dimensional cases, optimal, high-order, h-convergence error estimates in a skeleton norm. Some numerical experiments validate the theoretical results presented.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have