Abstract

In this study, a deep learning-based approach is used to address inverse problems involving the inversion of a magnetic field and the identification of the relevant source, given the field data within a specific subdomain. Three different techniques are proposed: the first one is characterized by the use of a conditional variational autoencoder (CVAE) and a convolutional neural network (CNN); the second one employs the CVAE (its decoder, more specifically) and a fully connected deep artificial neural network; while the third one (mainly used as a comparison) uses a CNN directly operating on the available data without the use of the CVAE. These methods are applied to the magnetostatic problem outlined in the TEAM 35 benchmark problem, and a comparative analysis between them is conducted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.