Abstract

The introduction of multiple-level cell (MLC) and triple-level cell (TLC) technologies reduced the reliability of flash memories significantly compared with single-level cell flash. With MLC and TLC flash cells, the error probability varies for the different states. Hence, asymmetric models are required to characterize the flash channel, e.g., the binary asymmetric channel (BAC). This contribution presents a combined channel and source coding approach improving the reliability of MLC and TLC flash memories. With flash memories data compression has to be performed on block level considering short-data blocks. We present a coding scheme suitable for blocks of 1 kB of data. The objective of the data compression algorithm is to reduce the amount of user data such that the redundancy of the error correction coding can be increased in order to improve the reliability of the data storage system. Moreover, data compression can be utilized to exploit the asymmetry of the channel to reduce the error probability. With redundant data, the proposed combined coding scheme results in a significant improvement of the program/erase cycling endurance and the data retention time of flash memories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call