Abstract

A simple one step solvotermal strategy using non-toxic and cost-effective precursors has been developed to prepare reduced graphene oxide (RGO)-Fe3O4 non-nanocomposite for removal of Cr(VI). Compared with the nano-adsorbent, the RGO-Fe3O4 hybrid particles with size larger than 100nm can reduce cell toxicity in water treatment processes. The structure, surface and magnetic characteristics of the non-nanocomposite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), and Vibrating sample magnetometer (VSM). The RGO-Fe3O4 composite with the highest loading of Fe3O4 demonstrates the fastest removal of 500μg/L Cr(VI) which can reach 85% within 5min at neutral pH. The adsorption kinetics follows the pseudo-second-order model and the adosorbent exhibits better Cr(VI) removal efficiency in water at low pH. However, the removal efficiency of Cr(VI) decreased when common hazardous ions were added in water. The large saturation magnetization (41.12emu/g) of the synthesized non-nanoparticles allows fast separation of the adsorbent from water. The RGO-Fe3O4 non-nanocomposite could be utilized as an efficient, stable, less toxic and magnetically separable adsorbent for environmental cleanup.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.