Abstract

A generic solver in a structured Cartesian adaptive mesh refinement framework is extended to simulate unsteady shock-induced combustion problems on a structured curvilinear mesh. A second-order accurate finite volume method is used with a grid-aligned Riemann solver for inviscid thermally perfect gas mixtures. To solve these reactive problems, detailed chemical kinetic mechanisms are employed with a splitting approach. The prolongation and restriction operators are modified to implement the adaptive mesh refinement algorithm on a mapped mesh. The developed solver is verified with several benchmark tests and is then used to simulate unsteady shock-induced combustion. The results show that the computed stand-off distance of waves and oscillation frequencies of mass fraction of products observed at the stagnation point are in good agreement with the results from experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call