Abstract

Owing to the permanently growing computational resources and the known predictive deficiencies of unsteady Reynolds averaged Navier-Stokes simulations, scale-resolving simulations become affordable methods to further study the unsteady phenomena of complex flows. Especially high-order spatial discretizations, such as the discontinuous Galerkin method, seem to be well suited for these simulations due to their superior dispersion and dissipation properties in comparison to their low-order counterparts. In this paper, we investigate the implicit large eddy simulations of a fully developed turbulent channel flow with an high-order discontinuous Galerkin method and a second-order accurate finite volume method. Statistical quantities, obtained with varying approximation orders but by using the same number of degrees of freedom, are compared to reference DNS data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call