Abstract

Graphitic carbon nitride with nitrogen defects (g-C3N4-x) is prepared by a facile and effective solid-state chemical reduction technique at mild temperature conditions. The cyano groups and nitrogen vacancies, as evidenced by electron paramagnetic resonance (EPR), X-ray photoelectron spectrometer (XPS), Fourier transform infrared spectra (FTIR) and Solid-state 13C MAS NMR spectra, are controllable via adjusting chemical reduction temperature. Comparing to the pristine g-C3N4, the as-prepared g-C3N4-x shows much enhanced photocatalytic H2 evolution activity under visible-light irradiation. The maximum H2 evolution rate of 3068 μmol·g−1·h−1 is achieved with g-C3N4-x after chemical reduction treatment at 400 °C for 1 h, which is 4.85 times that of the pristine g-C3N4. Moreover, excellent reusability and storage stability have been shown by this photocatalyst as well. It is discovered that nitrogen defects can result in both the up-shift of the valance band and the down-shift of the conduction band, which benefit the absorption of longer wavelength photons and trapping of the photoinduced electrons, therefore reducing the recombination losses of the generated carriers. It is because of this improved visible-light absorption and charge carrier separation, g-C3N4-x displays better visible-light photocatalytic activity compared to the pristine g-C3N4. It is then concluded that the synthetic strategy presented here represents a straightforward and efficient way to synergistically optimize the chemical composition, optical response, and photocatalytic characteristics of g-C3N4-based photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.