Abstract
The results of a 35/37Cl solid-state nuclear magnetic resonance (SSNMR) study of the 1-butyl-3-methylimidazolium chloride complex of meso-octamethylcalix[4]pyrrole (1) are reported. Line shapes obtained from magic-angle-spinning and stationary powder samples collected at 9.4 and 21.1 T are analyzed to provide the 35/37Cl quadrupolar tensor and chemical shift (CS) tensor and their relative orientation. The relatively high symmetry of the chloride ion coordination environment is manifested in the small value of the quadrupole coupling constant, CQ(35Cl) = 1.0 MHz. The isotropic chemical shift of 120 ppm (with respect to NaCl(s)) is at the upper edge of the typical range seen for organic hydrochlorides. Consideration of chemical shift anisotropy (span, Ω = 50 ppm) and non-coincidence of the quadrupolar and CS tensors were essential to properly simulate the experimental spectra. The utility of gauge-including projector-augmented wave density functional theory (GIPAW-DFT) calculations of chlorine quadrupolar and CS tensors in organic chlorides was explored by validation against available benchmark experimental data for solid amino acid hydrochlorides. The calculations are shown to systematically overestimate the value of the 35Cl quadrupole coupling constant. Additional calculations on various hydrated and solvated models of 1 are consistent with a structure in which solvent and water of hydration are absent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.