Abstract

High-resolution solid-state 31P NMR spectroscopy was used to investigate a series of 1:1 silver–triphenylphosphine complexes, [Ph3PAgX]n, where X is a monovalent anion and n = 1, 2, 3, 4, or ∞. The 31P CP MAS NMR spectra reveal the number of distinct phosphorus sites in these complexes as well as the |1J(109Ag,31P)| values, which range from 401 ± 10 Hz (X = N3–) to 869 ± 10 Hz (X = SO3CF3–). The data obtained here and in earlier investigations indicate that |1J(109Ag,31P)| values for silver–tertiary phosphine complexes decrease as Ag–P bond lengths increase. This experimental conclusion is supported by DFT calculations, which also indicate that the Fermi-contact mechanism is the only important spin–spin coupling mechanism for 1J(109Ag,31P) in these complexes. In addition, the crystal structure of a silver–triphenylphosphine trifluoroacetate tetramer was determined using X-ray crystallography, and the structure of a silver–triphenylphosphine chloride tetramer was reinvestigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call