Abstract

ABSTRACT For more sustainable shipping operation in coastal areas and port cities, shore side power (SSP) systems are attracting widespread interest as a solution to reduce ship auxiliary engine emissions, noise and vibration. The potential of these systems can be further improved by integrating renewable energy into the electricity grid. However, the majority of prior research has focused on investigating SSP systems for large ports in large shipping hub countries. Therefore, in this study, SSP technology is investigated for an inland waterway in Egypt on the Suez Canal utilising real ferries operational data. Green electricity from solar sunshade structures is generated for the SSP system utilising the Egyptian excellent solar energy potential. For this study, the ferry diesel generator, battery and solar systems are modelled in MATLAB/Simulink environment to investigate the proposed SSP system. Results indicate that the proposed SSP system could eliminate annually 1420 tonnes of emissions as well reduce the grid CO 2 emissions by 1204 tonnes through the green electricity supplied to the grid. Moreover, the cash flow and net present value analyses have shown good profitability with a payback period between 7.4 and 12 years.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.