Abstract

The paper considers a software package designed to simulate the propagation of dynamic wave disturbances in heterogeneous media. One of the main features of the considered software package is numerical algorithms with an explicit selection of inhomogeneities. Within the framework of the work, such inhomogeneities as pores, fractures and interfaces between media (contact boundaries) are considered. The considered algorithms make it possible to perform calculations in different scale settings in micro and macro sizes. The mathematical model is based on the equations of the linear theory of elasticity. For the calculation, block structural meshes are used. The software package is parallelized using MPI and OpenMP technologies. Separate parts of the algorithm are parallelized using graphics accelerators such as GPGPU. The paper describes the features of the algorithms under consideration and provides examples of calculations that demonstrate the capabilities of the algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.