Abstract

Various charged particles in space, including alpha particles, neutrons, heavy ions, and photons, pose reliability and stability concerns for memory circuits. These particles also create an ion track in the memory chip, disrupting the storage bit. The standard 6T SRAM is particularly susceptible to these disturbances. Several researchers suggest employing radiation-hardened SRAM cells to solve this problem. Most studies examine the inclusion of redundant nodes in the memory cell to recover the lost bit. This paper shows a new SEUH-12T SRAM memory cell with redundant nodes to deal with the soft error problem. The proposed SEUH-12T memory cell performance is compared to that of reliable radiation-hardened memory cells such as Quatro-10T, We-Quatro-12T, QCCS-12T, STS-10T, RHMC-12T, and RHWC-12T. The proposed SEUH-12T cell protects against single and multiple node disruptions by considering minimum sensitive nodes layout area separation concept. Furthermore, proposed SEUH-12T exhibits 8.5×/ 6.3×/ 5.6×/ 1.4×/ 1.2×/ 1.4×/ 1.04× times greater read stability than existing 6T-SRAM/ Quatro-10T/ We-Quatro-12T/ QCCS-12T/ STS-10T/ RHMC-12T/ RHWC-12T memory cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call