Abstract

A neural network model for rainfall retrieval over ocean from remotely sensed microwave (MW) brightness temperature (BT) is proposed. BT data are obtained from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The BT values from different channels of TMI over the Pacific Ocean (163/spl deg/ to 177/spl deg/W and 18/spl deg/ to 34/spl deg/S) are the input features. The near-surface rainfall rate from the Precipitation Radar (PR) are considered as a target. The proposed model consists of a neural network with online feature selection (FS) and clustering techniques. A K-means clustering algorithm is applied to cluster the selected features. Different networks have been trained to give an instantaneous rainfall rate with all input features as well as with selected features obtained by applying the FS algorithm. It is found that the hybrid network utilizing FS and clustering techniques performs better. The developed network is also validated with two independent datasets on March 14, 2000 over the Atlantic Ocean having stratiform rain and on March 21, 2000 over the Pacific Ocean having both stratiform and convective rain. In both cases, the hybrid network performs well with correlation coefficient improving to 0.78 and 0.81, respectively, in contrast to 0.70 and 0.75 for the network with all features. The rainfall rate retrieved from the hybrid network is also compared with the TMI surface rain rate, and a correlation of 0.84 and 0.75 is found for the two events. The proposed hybrid model is validated with a Doppler Weather Radar, and correlation of 0.52 is observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call