Abstract

Lipase with unique regioselectivity is an attractive biocatalyst for elaborate lipid modification. However, the excavation of novel sn-2 regioselective lipases is difficult due to their scarcity in nature, with Candida antarctica lipase A (CALA) being the pronouncedly reported one. Here, we identified a novel CALA-like lipase from Cordyceps militaris (CACML7) via in silico mining. Through chiral-phase high-performance liquid chromatography, we determined that CACML7 displays sn-2 regioselectivity (>68 %) as does CALA, but exhibits distinctive chain length selectivity and bias against unsaturated fats. Notably, the curvature of the acyl-binding tunnel was expected to contribute to the 2.2-fold higher preference for cis-fatty acid (C18:1, cis-Δ9) over trans-fatty acid (C18:1, trans-Δ9) unlike trans-active CALA. Random pose docking of trioleoylglycerol (TOG) into the active site of a lid-truncated mutant of CACML7 revealed that TOG accepts a tuning fork conformation, of which the precise positioning of the reactive ester group towards the catalytic center was only favorable via sn-2 binding mode. The unique active site morphology, which we refer to as an “acyl-binding tunnel with a narrow entrance,” may contribute to the sn-2 regioselectivity of CACML7. Our data provide an attractive model to better understand the mechanism underlying sn-2 regioselectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.