Abstract

The composite $$L_q~(0<q<1)$$ minimization problem over a general polyhedron has received various applications in machine learning, wireless communications, image restoration, signal reconstruction, etc. This paper aims to provide a theoretical study on this problem. First, we derive the Karush–Kuhn–Tucker (KKT) optimality conditions for local minimizers of the problem. Second, we propose a smoothing sequential quadratic programming framework for solving this problem. The framework requires a (approximate) solution of a convex quadratic program at each iteration. Finally, we analyze the worst-case iteration complexity of the framework for returning an $$\epsilon $$ -KKT point; i.e., a feasible point that satisfies a perturbed version of the derived KKT optimality conditions. To the best of our knowledge, the proposed framework is the first one with a worst-case iteration complexity guarantee for solving composite $$L_q$$ minimization over a general polyhedron.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.