Abstract
A method is proposed for solving equality constrained nonlinear optimization problems involving twice continuously differentiable functions. The method employs a trust funnel approach consisting of two phases: a first phase to locate an $\epsilon$-feasible point and a second phase to seek optimality while maintaining at least $\epsilon$-feasibility. Two-phase approaches of this kind based on a cubic regularization methodology have recently been proposed along with supporting worst-case iteration complexity analyses. Notably, in these approaches, the objective function is completely ignored in the first phase when $\epsilon$-feasibility is sought. The main contribution of the method proposed in this paper is that the same worst-case iteration complexity is achieved, but with a first phase that also accounts for improvements in the objective function. As such, the method attempts to put significantly less burden on the second phase for seeking optimality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.