Abstract

Unwanted events on roads, such as incidents and increased traffic jams, can cause human lives and economic loss. For efficient incident management, it is essential to send Emergency Vehicles (EVs) to the incident place as quickly as possible. To reduce incidence clearance time, several approaches exist to provide a clear pathway to EVs mainly fitted with RFID sensors in the urban areas. However, they neither assign priority to the EVs based on the type and severity of an incident nor consider the effect on other on-road traffic. To address this issue, in this paper, we introduce an Emergency Vehicle Priority System (EVPS) by determining the priority level of an EV based on the type and the severity of an incident, and estimating the number of necessary signal interventions while considering the impact of those interventions on the traffic in the roads surrounding the EV's travel path. We present how EVPS determines the priority code and a new algorithm to estimate the number of green signal interventions to attain the quickest incident response while concomitantly reducing impact on others. A simulation model is developed in Simulation of Urban Mobility (SUMO) using the real traffic data of Melbourne, Australia, captured by various sensors. Results show that our system recommends appropriate number of intervention that can reduce emergency response time significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call