Abstract
In this paper, we propose a centralized electric vehicles (EVs) recharge scheduling system for parking lots using a realistic vehicular mobility/parking pattern focusing on individual parking lots. We consider two different types of EV based on their mobility/parking patterns: 1) regular EVs; and 2) irregular EVs. An extensive trace-based vehicular mobility model collected from the Canton of Zurich is used for the regular EVs, and a probabilistic pattern built on top of this trace is used for modeling the behavior of irregular EVs. To the extent of our knowledge, this is the first EV charging scheduling study in the literature that takes into account a realistic vehicular mobility pattern focusing on individual parking lots. We compare the performance of our proposed system with two well-known basic scheduling mechanisms, first come first serve and earliest deadline first, with regard to two objective functions: 1) maximizing the total parking lot revenue; and 2) maximizing the total number of EVs fulfilling their requirements. Comparison results show that our proposed system outperforms well-known basic scheduling mechanisms with regards to both objectives. Parking lots managing the recharging of a high number of EVs will greatly benefit from using such recharge scheduling systems in the context of smart cities.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have