Abstract

The combination of chemotherapy and phototherapy has received tremendous attention in multimodal cancer therapy. However, satisfactory therapeutic outcomes of chemo-photothermal therapy (chemo-PTT) still remain challenging. Herein, a biocompatible smart nanoplatform based on benzothiazole-linked conjugated polymer nanoparticles (CPNs) is rationally designed, for effectively loading doxorubicin (DOX) and Mo-based polyoxometalate (POM) through both dynamic chemical bond and intermolecular interactions, with an expectation to obtain new anticancer drugs with multiple stimulated responses to the tumor microenvironment (TME) and external laser irradiation. Controlled drug release of DOX from the obtained nanoformulation (CPNs-DOX-PEG-cRGD-BSA@POM) triggered by both endogenous stimulations (GSH and low pH) and exogenous laser irradiation has been well demonstrated by pharmacodynamics investigations. More intriguingly, incorporating POM into the nanoplatform not only enables the nanomedicine to achieve mild hyperthermia but also makes it exhibit self-assembly behavior in acidic TME, producing enhanced tumor retention. Benefiting from the versatile functions, the prepared CPNs-DOX-PEG-cRGD-BSA@POM exhibited excellent tumor targeting and therapeutic effects in murine xenografted models, showing great potential in practical cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call