Abstract
Molybdenum disulfide (MoS2) has been extensively explored for biomedical applications due to its excellent photothermal conversion ability. In this paper, we report a nanoplatform based on folic acid (FA) targeted dual-stimuli responsive MoS2 nanosheets and explore this for the treatment of FA-receptor positive human breast cancer. The nanocomposites generated had a uniform diameter (ca. 133 nm), and could be loaded with the anti-cancer drug doxorubicin (DOX) to a high capacity (151.4 mg/g). The release of DOX was greatly accelerated at pH 5.0 as compared to pH 7.4. In addition, it was found that drug release is enhanced under near infrared laser (NIR) irradiation, showing that the composites can be used as dual responsive systems, with DOX release controllable through pH or NIR irradiation. MTT assays and confocal experiments showed that the MoS2-based nanoplatform could selectively target and kill FA-positive MDA-MB-231 cells (a human breast cancer cell line). The platform also allowed the combination of chemotherapy and photothermal therapy, which led to synergistic effects superior to either monotherapy. The functionalized MoS2 nanoplatform developed in this work hence could be a potent system for targeted drug delivery and synergistic chemo-photothermal cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.