Abstract

Particle clusters in CFB risers were identified from the instantaneous solids holdup signals by a new sliding-window based signal processing method. By shifting the time window and calculating the mean and the standard deviation within it, a non-linear threshold curve for identifying the clusters was derived instead of the conventional constant threshold. The optimal sliding window size was determined as Wb = 1024 data points by the bisection method on the entire piece of signals. Using the proposed method, a more realistic characterization of the particle clusters in both HDCFB and LDCFB was obtained by considering the bulk fluctuation of the gas-solids flow. The clusters in HDCFB have higher solids holdup and lower velocity than that in the LDCFB. The HDCFB is also found to have a greater number of loose clusters for better gas-solids contacting and exchanges in the center of the riser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.