Abstract

In this study, we present a new sixth-order finite difference weighted essentially non-oscillatory (WENO) scheme for solving Hamilton–Jacobi equations. The proposed scheme recovers the maximal approximation order in smooth regions without loss of accuracy at critical points. We incorporate exponential polynomials into the scheme to obtain better approximation near steep gradients without spurious oscillations. In order to design nonlinear weights based on exponential polynomials, we suggest an alternative approach to construct Lagrange-type exponential functions reproducing the cell-average values of exponential basis functions. Using the Lagrange-type exponential functions, we provide a detailed analysis of the approximation order of the proposed WENO scheme. Compared to other WENO schemes, the proposed scheme is simpler to implement, yielding better approximations with lower computational costs. A number of numerical experiments are presented to demonstrate the performance of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.