Abstract
In this study, we provide a novel third-order weighted essentially non-oscillatory (WENO) method to solve Hamilton-Jacobi equations. The key idea is to incorporate exponential polynomials to construct numerical fluxes and smoothness indicators. First, the new smoothness indicators are designed by using the finite difference operator annihilating exponential polynomials such that singular regions can be distinguished from smooth regions more efficiently. Moreover, to construct numerical flux, we employ an interpolation method based on exponential polynomials which yields improved results around steep gradients. The proposed scheme retains the optimal order of accuracy (i.e., three) in smooth areas, even near the critical points. To illustrate the ability of the new scheme, some numerical results are provided along with comparisons with other WENO schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.