Abstract
We report on theoretical and experimental investigation of A-site driven ferroelectricity in ferromagnetic La2NiMnO6 thin films grown on SrTiO3 substrates. Structural analysis and density functional theory calculations show that epitaxial strain stretches the rhombohedral La2NiMnO6 crystal lattice along the [111]cubic direction, triggering a displacement of the A-site La ions in the double perovskite lattice. The lattice distortion and the A-site displacements stabilize a ferroelectric polar state in ferromagnetic La2NiMnO6 crystals. The ferroelectric state only appears in the rhombohedral La2NiMnO6 phase, where MnO6 and NiO6 octahedral tilting is inhibited by the 3-fold crystal symmetry. Electron localization mapping showed that covalent bonding with oxygen and 6s orbital lone pair formation are negligible in this material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.