Abstract

This article elaborates on a reduced switch count-based inverter for a single-stage solar photovoltaic (SPV) fed induction motor (IM) with sensorless speed control for water pumping applications. The traditional SPV-fed IM for water pumping applications requires a six-switch voltage source inverter (SSVSI) for transforming the DC power from the SPV system into AC power. However, the same performance is achieved using a four-switch voltage source inverter (FSVSI). Here, the entire system requires less number of switches and hence reduces switching losses and cost as compared to the traditional solar water pumping system. Moreover, the sensorless speed control is implemented using a speed estimator to reduce the overall cost further and enhance reliability. The reference voltage ( V d c r ) is achieved using an adapted incremental conductance (AINC), and the control of IM is performed using direct vector control (DVC). The control signals for the proposed system are generated using DSPACE DS-1104 for real-time implementation. The proposed SPV-fed FSVSI-based 1-HP IM operation is performed at different irradiation levels in the MATLAB-Simulink environment and validated experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call