Abstract

This paper presents a new three-phase inverter based on the Cuk converter. The main feature of the proposed topology is that the energy storage elements, such as inductors and capacitors, can be reduced in order to improve the reliability, and reduce size and total cost. The buck-boost inherent characteristic of the Cuk converter, depending on the time-varying duty ratio, provides flexibility for standalone and grid connected applications when the required output ac voltage is lower or greater than the dc side voltage. This property is not found in the conventional current source inverter when the dc input current is always greater than the ac output or in the conventional voltage source inverter as the output ac voltage is always lower than the dc input. The proposed system allows much smaller, more reliable nonelectrolytic capacitors to be used for energy source filtering. The new three-phase inverter is convenient for photovoltaic applications where continuous input currents are required for maximum power point tracking operation. Average large and small signal models are used to study the Cuk converter's nonlinear operation. The basic structure, control design, and MATLAB/SIMULINK results are presented. Practical results substantiate the design flexibility of the Cuk-based topology controlled by a TMSF280335 DSP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.