Abstract

Because Mycobacterium bovis, termed bacillus Calmette-Guérin (BCG), the only available used tuberculosis (TB) vaccine, retains immunomodulatory properties that limit its protective immunogenicity, there are continuous efforts to identify the immunosuppression mechanism as well as new strategies for improving the immunogenicity of BCG. Here, an ssDNA aptamer "antibody" BM2 specifically bound to the mannose-capped lipoarabinomannan (ManLAM) of BCG was selected. BM2 significantly blocked ManLAM-mannose receptor (MR) binding, triggered ManLAM-CD44 signaling, and enhanced M1 macrophage and Th1 activation via cellular surface CD44 in vitro and in vivo. BM2 enhanced immunoprotective effects of BCG against virulent Mycobacterium tuberculosis H37Rv infection in mice and monkeys models. Thus, we report a new mechanism of the interaction between ManLAM and CD44 on macrophages and CD4(+) T cells and reveal that ManLAM-binding membrane molecule CD44 is a novel target for the enhancement of BCG immunogenicity, and BM2 has strong potential as an immune enhancer for BCG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.