Abstract
The COVID-19 pandemic shows a critical need for rapid, inexpensive, and ultrasensitive early detection methods based on biomarker analysis to reduce mortality rates by containing the spread of epidemics. This can be achieved through the electrical detection of nucleic acids at the single-molecule level. In particular, the scanning tunneling microscopic-assisted break junction (STM-BJ) method can be utilized to detect individual nucleic acid molecules with high specificity and sensitivity in liquid samples. Here, we demonstrate single-molecule electrical detection of RNA coronavirus biomarkers, including those of SARS-CoV-2 as well as those of different variants and subvariants. Our target sequences include a conserved sequence in the human coronavirus family, a conserved target specific for the SARS-CoV-2 family, and specific targets at the variant and subvariant levels. Our results demonstrate that it is possible to distinguish between different variants of the COVID-19 virus using electrical conductance signals, as recently suggested by theoretical approaches. Our results pave the way for future miniaturized single-molecule electrical biosensors that could be game changers for infectious diseases and other public health applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have