Abstract

In this paper, we simulate a single-molecule diode to calculate the effective coupling and investigate the conductivity, as well as the effect of the electric field on these two parameters. First, we obtain the molecule states and energies at 0 V. The next step is to calculate the electrode/molecule coupling using the obtained electrode and molecule Hamiltonian. The electrode/molecule coupling depends on distance. By increasing the distance from 5 to 5.5 angstroms, the coupling decreases from 0.004 to 0.0002 eV. After calculating the electrode/molecule coupling, which is the most significant parameter in electron transfer, the results can be used to obtain the current-voltage and conductivity curves of the device. Simulation results demonstrate that externally applied electric field to the benzene molecule (isolated molecule) can cause a reduction in the effective coupling between the Au electrode and benzene, leading to decreased current and conductivity. Additionally, the applied electric field narrows the gap between the HOMO and LUMO energy levels. We conducted this computational work using Gaussian 09 software and a MATLAB code, both of which are based on the density functional theory (DFT) approach and the self-consistent field (SCF) method. For DFT calculations, we employed the three-parameter Beck hybrid exchange functional (B3), hybridized with the nonlocal correlation functional developed by Lee, Yang, and Parr (LYP). All optimizations were performed with triple-zeta polarized (TZP) split-valence 6-311G basis sets. The final step involved calculating the electrode/molecule coupling using the Huckel method and integrating the site-to-state transformation with Huckel parameters and the Fermi golden rule. After this calculation, we obtained the current-voltage and conductivity curves using MATLAB software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.