Abstract
Models with single-index structures are among the many existing popular semiparametric approaches for either the conditional mean or the conditional variance. This paper focuses on a single-index model for the conditional quantile. We propose an adaptive estimation procedure and an iterative algorithm which, under mild regularity conditions, is proved to converge with probability 1. The resulted estimator of the single-index parametric vector is root-n consistent, asymptotically normal, and based on simulation study, is more efficient than the average derivative method in Chaudhuri, Doksum, and Samarov (1997, Annals of Statistics 19, 760–777). The estimator of the link function converges at the usual rate for nonparametric estimation of a univariate function. As an empirical study, we apply the single-index quantile regression model to Boston housing data. By considering different levels of quantile, we explore how the covariates, of either social or environmental nature, could have different effects on individuals targeting the low, the median, and the high end of the housing market.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.