Abstract
We present a framework for modeling and estimating dynamics of variance and skewness from time-series data using a maximum likelihood approach assuming that the errors from the mean have a non-central conditional t distribution. We parameterize conditional variance and conditional skewness in an autoregressive framework similar to that of GARCH models and estimate the parameters in a conditional noncentral t distribution. The likelihood function has two time-varying parameters, the degrees of freedom and the noncentrality parameter. We apply this methodology to daily and monthly equity returns data from the U.S., Germany and Japan, concurrently estimating conditional mean, variance and skewness. We find that there is significant conditional skewness. We then use this model to understand how the inclusion of conditional skewness affects some of the well-known stylized facts about conditional variance and the relation between returns and conditional variance. Two important stylized facts about conditional variance we examine are persistence and asymmetry in variance. Persistence refers to the tendency where high conditional variance is followed by high conditional variance. Asymmetry in variance, i.e., the observation that conditional variance depends on the sign of the innovation to the conditional mean has been documented in asymmetric variance models used in Glosten, Jagannathan, and Runkle (1993) and Engle and Ng (1993). We find that the evidence of asymmetric variance is really just conditional skewness. Inclusion of conditional skewness also impacts the persistence in conditional variance. However, we also find that there are significant seasonalities in variance and the results also depend on how the seasonal effects are accommodated in the estimation methodology. We also examine the relation between expected returns and volatility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.