Abstract

Recently, lipid nanoparticles (LNPs)-based mRNA delivery has been approved by the FDA for SARS-CoV-2 vaccines. However, there are still considerable points for improvement in LNPs. Especially, local administration of LNPs-formulated mRNA can cause off-target translation of mRNA in distal organs which can induce unintended adverse effects. With the hypothesis that large and rigid nanoparticles can be applied to enhance retention of nanoparticles at the injection site, a polyethyleneimine (PEI)-coated porous silica nanoparticles (PPSNs)-based mRNA delivery platform is designed. PPSNs not only facilitate localized translation of mRNA at the site of injection but also prolonged protein expression. It is further demonstrated that the development of a highly efficacious Zika virus (ZIKV) vaccine using mRNA encoding full-length ZIKV pre-membrane (prM) and envelope (E) protein delivered by PPSNs. The ZIKV prME mRNA-loaded PPSNs vaccine elicits robust immune responses, including high levels of neutralizing antibodies and ZIKV E-specific T cell responses in C57BL/6 mice. Moreover, a single injection of prME-PPSNs vaccine provided complete protection against the ZIKV challenge in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.