Abstract

The voltage-sensitive sodium (Na+) channel (Vssc) is the target site of pyrethroid insecticides. Pest insects develop resistance to this class of insecticide by acquisition of one or multiple amino acid substitution(s) in this channel. In Southeast Asia, two major Vssc types confer pyrethroid resistance in the dengue mosquito vector Aedes aegypti, namely, S989P+V1016G and F1534C. We expressed several types of Vssc in Xenopus oocytes and examined the effect of amino acid substitutions in Vssc on pyrethroid susceptibilities. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to permethrin by 100- and 25-fold, respectively, while S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to permethrin by 1100-fold. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to deltamethrin by 10- and 1-fold (no reduction), respectively, but S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to deltamethrin by 90-fold. These results imply that pyrethroid insecticides are highly likely to lose their effectiveness against A. aegypti if such a Vssc haplotype emerges as the result of a single crossing-over event; thus, this may cause failure to control this key mosquito vector. Here, we strongly emphasize the importance of monitoring the occurrence of triple mutations in Vssc in the field population of A. aegypti.

Highlights

  • Aedes aegypti is the major mosquito vector of dengue fever (DF), yellow fever, and chikungunya fever

  • The target site of pyrethroids is found in the voltage-sensitive Na+ channel (Vssc) consisting of about 2100 amino acid residues

  • We confirmed that Aedes aegypti Vssc harboring a triple mutations exhibited extremely high levels of resistance to pyrethroid insecticides

Read more

Summary

Introduction

Aedes aegypti is the major mosquito vector of dengue fever (DF), yellow fever, and chikungunya fever. Mosquito control is mainly achieved by pyrethroids because of the high and rapid activity of this class of insecticides in insects, and its low toxicity to mammals. Some amino acid substitutions alter the affinity of Vssc for pyrethroids and they confer resistance to this class of insecticide in insects [4]. Understanding how mutations alter interaction of pyrethroids with Vssc is important for improving our understanding of the pyrethroid mechanism of action and for constructing appropriate control strategies against pest insects. Previous studies have shown that additional amino acid substitutions concomitantly occurring in Vssc can further reduce an insect’s susceptibility to pyrethroids. Houseflies harboring Vssc with the L1014F substitution cause reduction in the affinity of Vssc for pyrethroids (so-called knockdown resistance or kdr), while the double mutation L1014F+M918T further reduces the susceptibility of the insects to pyrethroids (so-called super-kdr) [5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call