Abstract
Thermostable variants of the Cellulomonas sp. NT3060 glycerol kinase have been constructed by through the introduction of ancestral-consensus mutations. We produced seven mutants, each having an ancestral-consensus amino acid residue that might be present in the common ancestors of both bacteria and of archaea, and that appeared most frequently at the position of 17 glycerol kinase sequences in the multiple sequence alignment. The thermal stabilities of the resulting mutants were assessed by determining their melting temperatures (Tm), which was defined as the temperature at which 50% of the initial catalytic activity is lost after 15 min of incubation, as well as when the half-life of the catalytic activity occurs at a temperature of 60°C (t1/2). Three mutants showed increased stabilities compared to the wild-type protein. We then produced five more mutants with multiple amino acid substitutions. Some of the resulting mutants showed thermal stabilities much greater than those expected given the stabilities of the respective mutants with single mutations. Therefore, the effects of mutations are not always simply additive and some amino acid substitutions, which do not affect or only slightly improve stability when individually introduced into the protein, show substantial stabilizing effects in combination with other mutations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.