Abstract

Pathogenic Salmonella strains causing gastroenteritis typically can colonize and proliferate in the intestines of multiple host species. They retain the ability to form red dry and rough (rdar) biofilms, as seen in Salmonella enterica serovar Typhimurium. Conversely, Salmonella serovar like Typhi, which can cause systemic infections and exhibit host restriction, are rdar-negative. In this study, duck-derived strains and swine-derived strains of S. Typhimurium locate on independent phylogenetic clades and display relative genomic specificity. The duck isolates appear more closely related to human blood isolates and invasive non-typhoidal Salmonella (iNTS), whereas the swine isolates were more distinct. Phenotypically, compared to duck isolates, swine isolates exhibited enhanced biofilm formation that was unaffected by the temperature. The transcriptomic analysis revealed the upregulation of csgDEFG transcription as the direct cause. This upregulation may be mainly attributed to the enhanced promoter activity caused by the G-to-T substitution at position -44 of the csgD promoter. Swine isolates have created biofilm polymorphisms by altering a conserved base present in Salmonella Typhi, iNTS, and most Salmonella Typhimurium (such as duck isolates). This provides a genomic characteristics perspective for understanding Salmonella transmission cycles and evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.