Abstract

Soybean [Glycine max (L.) Merr.] contains two proteins called vegetative storage proteins (VSPs) that function as temporary storage reserves, but are also closely related to plant acid phosphatases of the haloacid dehalogenase (HAD) superfamily. This study examined the biochemical basis for the relatively low catalytic activity previously reported for these VSPs. The specific activity of purified recombinant VSPalpha on GMP was about 40-fold lower than for a related soybean root nodule acid phosphatase (APase), which had a specific activity of 845 U mg(-1) protein. Conversion of Ser106 to Asp increased VSPalpha activity about 20-fold. This Asp residue is present in nodule APase and is a highly conserved nucleophile in the HAD superfamily. Related VSPs from cultivated soybean and from three wild perennial soybeans, as well as a pod storage protein (PSP) from Phaseolus vulgaris L. all lack the catalytic Asp, suggesting they too are catalytically inefficient. Phylogenetic analysis showed the VSPs and PSP are more closely related to each other than to 21 other VSP-like proteins from several plant species, all of which have the nucleophilic Asp. This study suggests that loss of catalytic activity may be a requirement for the VSPs and PSP to function as storage proteins in legumes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.