Abstract
BackgroundA broad range of aromatic compounds can be degraded by enteric bacteria, and hydroxyphenylacetic acid (HPA) degrading bacteria are the most widespread. Majority of Escherichia coli strains can use both the structural isomers of HPA, 3HPA and 4HPA, as the sole carbon source, which are catabolized by the same pathway whose associated enzymes are encoded by hpa gene cluster. Previously, we observed that E. coli B REL606 grew only on 4HPA, while E. coli B BL21(DE3) grew on 3HPA as well as 4HPA.ResultsIn this study, we report that a single amino acid in 4-hydroxyphenylacetate 3-hydroxylase (HpaB) of E. coli determines the substrate specificity of HPA isomers. Alignment of protein sequences encoded in hpa gene clusters of BL21(DE3) and REL606 showed that there was a difference of only one amino acid (position 379 in HpaB) between the two, viz., Arg in BL21(DE3) and Cys in REL606. REL606 cells expressing HpaB having Arg379 could grow on 3HPA, whereas those expressing HpaB with Gly379 or Ser379 could not. Structural analysis suggested that the amino acid residue at position 379 of HpaB is located not in the active site, but in the vicinity of the 4HPA binding site, and that it plays an important role in mediating the entrance and stable binding of substrates to the active site.ConclusionsThe arginine residue at position 379 of HpaB is critical for 3HPA recognition. Information regarding the effect of amino acid residues on the substrate specificity of structural isomers can facilitate in designing hydoxylases with high catalytic efficiency and versatility.
Highlights
A broad range of aromatic compounds can be degraded by enteric bacteria, and hydroxyphenylacetic acid (HPA) degrading bacteria are the most widespread
We report that a single amino acid residue in HpaB is responsible for the altered substrate specificity of the HPA isomers
Identification of a single amino acid change in HpaB of E. coli REL606 Our previous phenotype microarray tests of the two E. coli B strains had revealed that REL606 utilized only 4HPA [18], whereas BL21(DE3) utilized both 3HPA and 4HPA [17]
Summary
A broad range of aromatic compounds can be degraded by enteric bacteria, and hydroxyphenylacetic acid (HPA) degrading bacteria are the most widespread. Hydroxyphenylacetic acid (HPA) is an aromatic compound that is abundantly present in nature [1, 2].
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have