Abstract

Joro spider toxin (JSTX) is one of the most potent antagonists of glutamatergic AMPA/KA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate) receptor channels in invertebrates and vertebrates. A differential blocking effect on certain types of glutamatergic synapses--e.g., parallel and climbing fiber synaptic inputs to rat cerebellar Purkinje neurons--has been shown by using a synthetic analog of the spider toxin. By investigating the molecular basis of the JSTX action on the recombinant AMPA/KA receptors GluR1-GluR4 and GluR6 expressed in Xenopus oocytes, we found that submicromolar concentrations of JSTX exert a subunit-specific block. Thus, receptor subunits forming a receptor channel with a linear current-voltage (I-V) relationship (GluR1/2, GluR2/3, and GluR6) were not affected, while receptor subunits with rectifying I-V relationships (GluR1, GluR3, GluR4, and GluR1/3) were reversibly blocked by JSTX. By using receptor-subunit mutants obtained by site-directed mutagenesis, we have identified a single amino acid position (glutamine in the proposed second transmembrane domain) that is critical for the JSTX block. Since this site has previously been shown to control the I-V relationship of the AMPA/KA receptor channel and to participate in the regulation of the channel's permeability for calcium ions, our findings suggest that JSTX binds close to the central pore region of the channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.