Abstract

Multivariate Gaussian graphical models are defined in terms of Markov properties, i.e., conditional independences, corresponding to missing edges in the graph. Thus model selection can be accomplished by testing these independences, which are equivalent to zero values of corresponding partial correlation coefficients. For concentration graphs, acyclic directed graphs, and chain graphs (both LWF and AMP classes), we apply Fisher's z-transform, Šidák's correlation inequality, and Holm's step-down procedure to simultaneously test the multiple hypotheses specified by these zero values. This simple method for model selection controls the overall error rate for incorrect edge inclusion. Prior information about the presence and/or absence of particular edges can be readily incorporated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.