Abstract

The use of radiofrequency multipoles and particularly the radiofrequency quadrupole (RFQ) controlled gas cell to facilitate on-line isobar separations for Accelerator Mass Spectrometry (AMS) is being explored experimentally and theoretically in a preliminary way at present. These new methods have the potential to extend greatly the analytical scope of AMS. However, there are many technical challenges to adapt an RF gas cell isobar separating device and still maintain stable and high transmission for routine AMS using the high current Cs+ sputter ion sources developed for nuclear physics and adapted to the detection of rare radioactive isotopes for AMS. An overview of linear RF ion guide properties is therefore needed to assist in the conceptualization of their efficient additions into AMS. In this work the intrinsic properties of linear RF ion guides, which are relevant to the generation of the RF induced ion energy distributions and for the evaluation of the ion transmissions in vacuum, are systematically studied using SIMION 8.1. These properties are compared among radiofrequency quadrupole, hexapole and octupole ion guides, so that their usefulness for AMS applications can be evaluated and compared. By simulation it is found that to prepare a typical RF captured AMS ion beam to within a safe range of ion energies prior to the onset of gas interactions, a higher multipole is more suitable for the first RF field receptor, while a quadrupole operated with q2∼0.5 is more suited as the final ion guide for concentrating the energy-cooled ions near axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.