Abstract

41Ca is an important biomedical radiotracer finding many applications in biological, nutritional and medical studies. The detection of 41Ca by AMS is however limited by an important background signal of 41K originating from biological samples and from contaminated cesium in the source. An approach consisting of using PbF2-assisted in-source fluorination in combination with an Isobar Separator for Anions (ISA), a device incorporating a low energy radio frequency quadrupole (RFQ) gas cell, promises to push down the limit of detection of 41Ca attainable on small (<3 MV) accelerator mass spectrometry (AMS) systems by several orders of magnitude. Such on-line reduction of 41K should also result in a simplification of biological sample preparation and less concern about variable 41K contamination of the cesium beam. The selective collision-induced fragmentation of KF3− versus CaF3-, occurring in the gas cell of an ISA equipped with a double segment RFQ, have been reported earlier1), leading to K being suppressed by a factor of 1e4 over Ca. We present here the future configuration of the ISA, redesigned using multi-segmented RFQ to enhance further this effect and improve transmission through the gas cell. A segmented RFQ is an appropriate tool to finely control ion energy down to the few eV's separating the fragmentation energies of the two fluoride species. This pre-commercial ISA destined to be used at the newly established A. E. Lalonde AMS laboratory at University of Ottawa (Canada) will be presented. Some practicalities of integrating a low energy RFQ-based device in a high energy AMS system will also be discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call